• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair for Quantum Theory
  • FAUTo the central FAU website
  1. Friedrich-Alexander University
  2. Faculty of Sciences
  3. Department of Physics
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander University
  2. Faculty of Sciences
  3. Department of Physics
Friedrich-Alexander-Universität Chair for Quantum Theory
Navigation Navigation close
  • Home
  • Research
    • Quantum Algorithms for near term Hardware
    • Superconducting Circuits
    • Simulation Methods for Quantum Many-Body Systems
    Portal Research
  • People
    • Current Members
    • Junior Research Group Palffy-Buß
    • Vacancies
    • Alumni
    Portal People
  • Teaching
  • Publications
    • Hartmann Group
    • Palffy-Buß Group
    • Reinhard Group
    Portal Publications
  • Seminars
    • Group Seminar
    • Journal Club
    Portal Seminars
  • Intranet

Chair for Quantum Theory

In page navigation: Publications
  • Hartmann Group
  • Palffy-Buß Group
  • Reinhard Group

Hartmann Group

Below are the publications indexed by the CRIS.

You may also consult the pre-prints on the arXiv.

  1. Sarma, B, Hartmann, M. Designing fast quantum gates using optimal control with a reinforcement-learning ansatz Physical Review Applied (2025) doi:10.1103/PhysRevApplied.23.014015
  2. Marti, L, Mansuroglu, R, Hartmann, M. Efficient Quantum Cooling Algorithm for Fermionic Systems Quantum (2025) doi:10.22331/q-2025-02-18-1635
  3. Nützel, L, Gresch, A, Hehn, L, Marti, L, et al. Solving an industrially relevant quantum chemistry problem on quantum hardware Quantum Science and Technology (2025) doi:10.1088/2058-9565/ad9ed3
  4. Mohseni, N, Shi, J, Byrnes, T, Hartmann, M. Deep learning of many-body observables and quantum information scrambling Quantum (2024) doi:10.22331/q-2024-07-18-1417
  5. Zapletal, P, McMahon, N, Hartmann, M. Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases Physical Review Research (2024) doi:10.1103/PhysRevResearch.6.033111
  6. Schmid, M, Braun, S, Sollacher, R, Hartmann, M. Highly efficient encoding for job-shop scheduling problems and its application on quantum computers Quantum Science and Technology (2024) doi:10.1088/2058-9565/ad9cba
  7. Eckstein, T, Mansuroglu, R, Czarnik, P, Zhu, J, et al. Large-scale simulations of Floquet physics on near-term quantum computers npj Quantum Information (2024) doi:10.1038/s41534-024-00866-1
  8. Mansuroglu, R, Adil, A, Hartmann, M, Holmes, Z, et al. Quantum Tensor-Product Decomposition from Choi-State Tomography PRX Quantum (2024) doi:10.1103/PRXQuantum.5.030306
  9. Mansuroglu, R, Fischer, F, Hartmann, M. Problem-specific classical optimization of Hamiltonian simulation Physical Review Research (2023) doi:10.1103/PhysRevResearch.5.043035
  10. Meyer, N, Scherer, D, Plinge, A, Mutschler, C, et al. Quantum Natural Policy Gradients: Towards Sample-Efficient Reinforcement Learning (2023) doi:10.1109/QCE57702.2023.10181
  11. Meyer, N, Scherer, D, Plinge, A, Mutschler, C, et al. Quantum Policy Gradient Algorithm with Optimized Action Decoding (2023)
  12. Heunisch, L, Eichler, C, Hartmann, M. Tunable coupler to fully decouple and maximally localize superconducting qubits Physical Review Applied (2023) doi:10.1103/PhysRevApplied.20.064037
  13. Mansuroglu, R, Eckstein, T, Nützel, L, Wilkinson, S, et al. Variational Hamiltonian simulation for translational invariant systems via classical pre-processing Quantum Science and Technology (2023) doi:10.1088/2058-9565/acb1d0
  14. Pechal, M, Roy, F, Wilkinson, S, Salis, G, et al. Direct implementation of a perceptron in superconducting circuit quantum hardware Physical Review Research (2022) doi:10.1103/PhysRevResearch.4.033190
  15. Herrmann, J, Llima, S, Remm, A, Zapletal, P, et al. Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases Nature Communications (2022) doi:10.1038/s41467-022-31679-5
  16. Baker, A, Huber, G, Glaser, N, Roy, F, et al. Single shot i-Toffoli gate in dispersively coupled superconducting qubits Applied Physics Letters (2022) doi:10.1063/5.0077443
  17. Feulner, V, Hartmann, M. Variational quantum eigensolver ansatz for the J1-J2 -model Physical Review B (2022) doi:10.1103/PhysRevB.106.144426
  18. Fischer, M, Chen, Q, Besson, C, Eder, P, et al. In situ tunable nonlinearity and competing signal paths in coupled superconducting resonators Physical Review B (2021) doi:10.1103/PhysRevB.103.094515
  19. Wilkinson, S, Hartmann, M. Superconducting quantum many-body circuits for quantum simulation and computing Applied Physics Letters (2020) doi:10.1063/5.0008202
  20. Duncan, C, Hartmann, M, Thomson, R, Öhberg, P. Synthetic mean-field interactions in photonic lattices European Physical Journal D (2020) doi:10.1140/epjd/e2020-100521-0
  21. Hartmann, M, Carleo, G. Neural-Network Approach to Dissipative Quantum Many-Body Dynamics Physical Review Letters (2019) doi:10.1103/PhysRevLett.122.250502
  22. Arute, F, Arya, K, Babbush, R, Bacon, D, et al. Quantum supremacy using a programmable superconducting processor Nature (2019) doi:10.1038/s41586-019-1666-5
FAU Erlangen-Nürnberg
Lehrstuhl Theoretische Physik II

Staudtstr. 7
91058 Erlangen
  • Legal notice
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up