Quantum Computing Problem Set 7

Prof. Dr. Michael J. Hartmann

WiSe 2019-2020

Problem 1: Phase Estimation

Consider a unitary U with an eigenvector $U|u\rangle=e^{i\phi}|u\rangle$ and $\phi=(2\pi/2^n)x$ with x=. We want to determine ϕ as accurately as possible, assuming that we can implement U and prepare one of it's eigenstates $|u\rangle$.

- a) Investigate controlled-U operations $U|0\rangle|u\rangle = |0\rangle|u\rangle$ and $U|1\rangle|u\rangle = |1\rangle|e^{i\phi}|u\rangle$. Describe a protocol where we apply U to $|+\rangle|u\rangle$, followed by a measurement of the control qubit, to infer information about ϕ . Which measurement can yield which information about ϕ ? Will repeating the measurement improve the estimate?
- **b)** Now consider a refined scheme where we assume we can also apply controlled- U^{2^k} operations for integer k efficiently. Starting with applying controlled- $U^{2^{n-1}}$, which information can one infer and what measurement should one make?
- c) Now apply controlled- $U^{2^{n-2}}$ and take into account the result of the preceding step. What information can one infer and which measurement does we need to make? Rephrase the measurement as a unitary rotation followed by a measurement in the $|\pm\rangle$ basis.
- d) Iterating the preceding steps, describe a procedure (circuit) to obtain ϕ exactly.
- e) Compare the above procedure to the phase estimation algorithm discussed in the lectures.

Problem 2: Grover search

Grover's algorithm finds one marked item \overline{x} in an unstructured list of $N=2^n$ items. Classically you need to test on average N/2 items. Nonetheless, there is a quantum algorithm that can solve this problem with \sqrt{N} queries. In the quantum setting there is the set of basis states $|x_j\rangle$, $j=0,1,2,\ldots,N-1$ of the computational basis, i.e. each $|x_j\rangle=|00110\ldots\rangle$, and the goal is to find for which j one has $x_j=\overline{x}$.

a) Consider the operator U,

$$U|x\rangle = \begin{cases} -|x\rangle & \text{for } x = \overline{x} \\ |x\rangle & \text{else} \end{cases}$$
 (1)

which can also be written as

$$U = \mathbb{1} - 2|\overline{x}\rangle\langle\overline{x}| \tag{2}$$

Is there a way of constructing U in a similar manner as U_f used in Deutsch's problem?

- **b)** Consider n qubits in states $|0\rangle$. Which state do you get after applying a Hadamard on each qubit and the U as in equation (1). Write the result in the basis of all states $|x_j\rangle$, $j=0,1,2,\ldots N-1$. Hint, the amplitudes for all amplitudes of the basis states should be real.
- c) Consider the action of the gate with operator

$$R = 2H^{\otimes n} |0, \dots, 0\rangle \langle 0, \dots, 0| H^{\otimes n} - 1$$
(3)

and evaluate it's action on a state

$$|\psi\rangle = \sum_{j} a_{j} |x_{j}\rangle \tag{4}$$

with real amplitudes a_j . How does R change the amplitudes a_j ? Give a pictorial interpretation.

d) How does the probability of measuring the state $|\overline{x}\rangle$ change when applying R onto the state calculated in part b)? How does the probability of measuring the state $|\overline{x}\rangle$ change when applying R multiple times? How can one thus use the gates U and R to find the sought item \overline{x} ?